
Alkylation of 1,3-Oxathian

By KAORU FUJI,* MASARU UEDA, and EIICHI FUJITA (Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611, Japan)

Summary Reaction of 1,3-oxathienyl-lithium (1a) with halides gives 2-alkyl-1,3-oxathians.

RECENTLY a number of alkylated 1,3-oxathians have been synthesised^{1,2} and their conformational behaviour has been extensively studied.1,3 However, their chemical properties have received little attention from synthetic organic chemists. Here we describe C-C bond formation using the anionic species (1a) derived from 1,3-oxathian (1b).

1,3-Oxathien-2-yl-lithium (1a) in tetrahydrofuran prepared from 1.3-oxathian (1b) and s-butyl-lithium at -78 °C was guenched with D₂O. The ¹H n.m.r. spectrum of the

Producta	Halide	%	Yield ^b
(1c), R = Me	MeI		99
(1d), R = Et	EtI		90
$(1e), R = Pr^n$	Pr ⁿ I		83
$(\mathbf{1f}), \mathbf{R} = \mathbf{B}\mathbf{u}^{\mathbf{n}}$	BunBr		25
$(1g), R = Pr^{i}$	Pr ⁱ I		35°
(1h), R=CH ₂ Ph	PhCH₂Br		26^{d}

TABLE

^a All compounds gave C and H analyses and ¹H n.m.r. spectra consistent with the assigned structure. ^b By g.l.c. based on 1,3-oxathian after stirring at -78 °C for 1-2 h unless otherwise indicated. ^c At -20 °C for 6 days. ^d 1,2-Diphenylethane was also obtained (20%).

product purified by g.l.c., indicated >95% deuterium incorporation at C-2 in (1b). Addition of halides to (1b) vielded a variety of 2-alkylated oxathians (1c-h) in fair to excellent yields depending on halides.

Since 1,3-oxathians are cleaved under mild conditions to give the parent carbonyl compounds,⁴ 1,3-oxathians would be expected to have a wide range of synthetic utility as acyl anion equivalents.

(Received, 8th August 1977; Com. 827.)

- ¹ H. Friebolin, H. G. Schmid, S. Kabuss, and W. Faisst, Org. Magnetic Resonance, 1969, 1, 67.
 ² K. Pihlaja and P. Pasanen, Acta Chem. Scand., 1970, 24, 2257; P. Pasanen and K. Pihlaja, ibid., 1971, 25, 1908.
 ³ J. Gelan and M. Anteunis, Bull. Soc. Chim. belges, 1968, 77, 423; N. de Wolf and H. R. Buys, Tetrahedron Letters, 1970, 551; N. de Wolf, G. C. Verschoor, and C. Romers, Acta Cryst., 1972, B28, 2424.
 ⁴ H. J. E. Loewenthal, in 'Protective Groups in Organic Chemistry,' ed. J. F. W. McOmie, Plenum Press, London, 1973.